Introduction to Python for Science

Gaël Varoquaux

April 28, 2010

Contents

1 The workflow: IPython and a text editor 2
 1.1 Command line interaction 2
 1.2 Elaboration of the algorithm in an editor 3

2 Introduction to the Python language 4
 2.1 Basic types 4
 2.2 Control Flow 9
 2.3 Defining functions 12
 2.4 Exceptions handling in Python 17
 2.5 Reusing code 20
 2.6 File IO in Python 23
 2.7 Standard Library 26

3 Core scientific modules 31
 3.1 Numpy: array computing 31
 3.2 Matplotlib: scientific 2D plotting 39
 3.3 Scipy: numerical and scientific toolbox 42

4 Python patterns in neuro image 49
 4.1 Images and Mask 49
 4.2 Memory management 49
 4.3 Masked arrays 50
 4.4 Dealing with labels 51

5 3D plotting with Mayavi 53
 5.1 A simple example 53
 5.2 3D plotting functions 54
 5.3 Figures and decorations 58
 5.4 Interaction 61

6 Debugging 62
 6.1 Coding best practices to avoid getting in trouble 62
 6.2 The debugger 62
 6.3 print 67
6.4 Debugging strategies ... 67

7 Profiling Python code .. 68
 7.1 Timeit .. 68
 7.2 Profiler .. 68
 7.3 Line-profiler .. 70

8 Advanced numpy ... 71
 8.1 Broadcasting .. 72
 8.2 Views and strides .. 75
 8.3 Fancy indexing .. 79
 8.4 Robert (Kern)’s nasty stride trick 82

9 pyflakes: fast static analysis ... 83
 9.1 In kate ... 83
 9.2 In vim ... 83
 9.3 In emacs ... 84

Why Python
 • Efficient coding: what is the point of very fast simulations, if it takes longer to write them than to run them?
 • Full-fledge, non-specialized, programming language.
 • Communication: code should read like a book.
 • Code that we understand: developing an intuition, an understanding of the algorithms through exploratory coding and interaction.

Installing with distributions:
 • EPD: http://www.enthought.com/products/epd.php
 • Python(x,y): http://www.pythonxy.com

Resources
 Simple
 • In French Python for Science: http://dakarlug.org/pat/scientifique/html/index.html
 • The Python tutorial (excellent): http://docs.python.org/tutorial/
 Advanced
 • http://docs.scipy.org/
 • Python Scripting for Computational Science, Hans Petter Langtangen, Springer
 • Python Cookbook, David Ascher, Matt Margetson, Alex Martelli, O’Reilly
The workflow: IPython and a text editor

Interactive work to test and understand algorithm

Python is a general-purpose language. As such, there is not one blessed environment to work into, and not only one way of using it. Although this makes it harder for beginners to find their way in the beginning, it makes it possible for Python to be used to write programs, in web servers, or embedded devices. In this introductory chapter, we describe an interactive workflow with IPython that is handy to explore and understand algorithms.

Note: Reference document for this section:

1.1 Command line interaction

Start ipython:

```
In [1]: print('Hello world')
Hello world
```

Getting help:

```
In [2]: print builtins.print
builtins.print
Type:     builtin_function_or_method
Base Class: <type 'builtin_function_or_method'>
String Form: <built-in function print>
Namespace: Python builtins
Docstring:

    print(value, ..., sep=' ', end='
', file=sys.stdout)

    Prints the values to a stream, or to sys.stdout by default.
    Optional keyword arguments:
    file: a file-like object (stream), defaults to the current sys.stdout.
    sep: string inserted between values, default a space.
    end: string appended after the last value, default a newline.
```

1.2 Elaboration of the algorithm in an editor

Create a file my_file.py in a text editor. Under EPD, you can use Sice, available from the start menu. Under Ubuntu, if you don’t already have your favorite editor, I would advise installing Stan’s Python editor. In the file, add the following lines:

```python
s = 'Hello world'
print(s)
```

Now, you can run it in ipython and explore the resulting variables:

```
In [3]: %run my_file.py
Hello world
In [4]: s
Out[4]: 'Hello world'
In [5]: %whos
```

From a script to functions

• A script is not reusable, functions are.
• Thinking in terms of functions helps breaking the problem in small blocks.
CHAPTER 2

Introduction to the Python language

Note: Reference document for this section:
Python tutorial: http://docs.python.org/tutorial/

2.1 Basic types

2.1.1 Numbers

• IPython as a calculator:

| In [1]: | 1 + 1 |
| Out[1]: | 2 |

| In [2]: | 2**10 |
| Out[2]: | 1024 |

| In [3]: | (1 + 1j)*(1 - 1j) |
| Out[3]: | (2+0j) |

• Scalar types: int, float, complex

| In [4]: | type(1) |
| Out[4]: | <type 'int'> |

| In [5]: | type(1.0) |
| Out[5]: | <type 'float'> |

| In [6]: | type(1+0j) |
| Out[6]: | <type 'complex'> |

Warning: Integer division

| In [7]: | 3/2 |
| Out[7]: | 1 |

| In [8]: | from __future__ import division |

| In [9]: | 3/2 |
| Out[9]: | 1.5 |

Trick: Use floats

| In [10]: | 3./2 |
| Out[10]: | 1.5 |

• Type conversion:

| In [11]: | float(1) |
| Out[11]: | 1.0 |

Exercise:

Compare two approximations of pi: 22/7 and 355/113
(pi = 3.14159265...)

2.1.2 Collections

Collections: list, dictionaries (and strings, tuples, sets, ...)

Lists

| In [12]: | l = [1, 2, 3, 4, 5] |

• Indexing:

| In [13]: | l[2] |
| Out[13]: | 3 |

Counting from the end:

| In [14]: | l[-1] |
| Out[14]: | 5 |

• Slicing:

| In [15]: | l[3:1] |
| Out[15]: | [4, 5] |

| In [16]: | l[1:3] |
| Out[16]: | [2, 3] |
In [17]: l[1:2]
Out[17]: [1, 3, 5]

In [18]: l[:3]
Out[18]: [1, 2, 3]

Syntax: start:stop:stride

• Operations on lists:
 Reverse:

In [19]: r = l[::-1]

In [20]: r
Out[20]: [5, 4, 3, 2, 1]

Append an item to r:

In [21]: r.append(3.5)
Out[21]: [5, 4, 3, 2, 1, 3.5]

Extend a list with another list (in-place):

In [22]: l.extend([6, 7])
Out[22]: [1, 2, 3, 4, 5, 6, 7]

Concatenate two lists:

In [23]: r + l
Out[23]: [1, 2, 3, 4, 5, 6, 7]

Sort r:

In [24]: r.sort()
Out[24]: [1, 2, 3, 3.5, 4, 5]

Note: Methods:

e.sort: sort is a method of r: a special function to is applied to r.

Warning: Mutables: Lists are mutable types: e.sort modifies in place r.

Note: Discovering methods:

In IPython: tab-completion (press tab)

2.1. Basic types

Dictionaries

Dictionaries are a mapping between keys and values:

In [29]: d = {'a': 1, 'b': 1.2, 'c': 13}
In [30]: d['b']
Out[30]: 1.2

In [31]: d['d'] = 'd'
In [32]: d
Out[32]: {'a': 1, 'b': 1.2, 'c': 13, 'd': 'd'}

In [33]: d.keys()
Out[33]: ['a', 'b', 'c', 'd']

In [34]: d.values()
Out[34]: [1, 1.2, 'c', 'd']

Warning: Keys are not ordered

Note: Dictionaries are an essential data structure

For instance to store precomputed values.

Strings

• Different string syntaxes:

```python
a = 'Mine'
a = "Chris's"
a = '''Mine and not his'''
a = """"""Mine and Chris's""
```
Strings are collections too:

```
In [35]: s = 'Python is cool'
Out[35]: 'Python is cool'
```

And they have many useful methods:

```
In [36]: s[4:]
Out[36]: 'cool'
```

• Strings are not mutable

String substitution:

```
In [38]: 'An integer: %i; a float: %f; another string: %s'
    % (1, 0.1, 'string')
Out[38]: 'An integer: 1; a float: 0.100000; another string: string'
```

More collection types

• Sets: non-ordered, unique items:

```
In [39]: s = set(('a', 'b', 'c', 'a'))
In [40]: s
Out[40]: set(['a', 'b', 'c'])
```

Sets cannot be indexed:

```
In [42]: s[1]                               Traceback (most recent call last)
   TypeError: 'set' object does not support indexing
```

• Tuples: non-mutable lists:

```
In [43]: t = 1, 2
In [44]: t
Out[44]: (1, 2)
In [45]: t[1]                               Traceback (most recent call last)
   TypeError: 'tuple' object does not support item assignment
```

2.2 Control Flow

Controls the order in which the code is executed.

2.2.1 if/else

```
In [1]: if 2+2 == 4:
    ...:     print('Totology')
        ...:     Totology
```

Blocks are delimited by indentation

```
In [2]: a = 10
In [3]: if a == 1:
    ...:     print(1)
    ...:     print(2)
    ...:     else:
    ...:     print('A lot')
    ...:
In [3]: A lot
```

2.2.2 for/range

Iterating with an index:

```
In [4]: for i in range(4):
    ...:     print(i)
```

```
0
1
2
3
```

But most often, it is more readable to iterate over values:

```
In [5]: for word in ('cool', 'powerful', 'readable'):
    ...:     print('Python is %s' % word)
```

```
Python is cool
Python is powerful
Python is readable
```

2.2.3 while/break/continue

Typical C-style while loop (Mandelbrot problem):

```
In [6]: t = 1, 2
In [7]: t
Out[7]: (1, 2)
In [8]: t[1]                               Traceback (most recent call last)
   TypeError: 'tuple' object does not support item assignment
```
In [6]: \(z = 1 + 1j \)

In [7]: while abs(z) < 100:

 ...: z = z*z + 1

 ...:

In [8]: z
Out[8]: (-134+352j)

break out of enclosing for/while loop:

In [9]: \(z = 1 + 1j \)

In [10]: while abs(z) < 100:

 ...: if z.imag == 0:

 ...: break

 ...: z = z*z + 1

 ...:

Rmk: continue the next iteration of a loop.

2.2.4 Conditional Expressions

- if object
 Evaluates to True:
 - any non-zero value
 - any sequence with a length > 0
 Evaluates to False:
 - any zero value
 - any empty sequence
- \(a = b \)
 Tests equality, with logics:

In [19]: 1 == 1.
Out[19]: True

- \(a is b \)
 Tests identity: both objects are the same

In [20]: 1 is 1.
Out[20]: False

In [21]: a = 1
In [22]: b = 1
In [23]: a is b
Out[23]: True

2.2.5 Advanced iteration

Iterate over any sequence

- You can iterate over any sequence (string, list, dictionary, file, ...)

In [11]: vowels = 'aeiouy'

In [12]: for i in 'powerful'

 ...: if i in vowels:

 ...: print(i),

 ...:

Oeu

Warning: Not safe to modify the sequence you are iterating over.

Keeping track of enumeration number

Common task is to iterate over a sequence while keeping track of the item number.

- Could use while loop with a counter as above. Or a for loop:

In [13]: for i in range(0, len(words)):

 ...: print(i, words[i])

 ...

0 cool
1 powerful
2 readable

- But Python provides enumerate for this:

In [14]: for index, item in enumerate(words):

 ...: print(index, item)

 ...

0 cool
1 powerful
2 readable

Looping over a dictionary

Use iteritems:

In [15]: for index, item in enumerate(words):

 ...: print(index, item)

 ...

0 cool
1 powerful
2 readable
In [15]: d = {'a': 1, 'b': 1.2, 'c': 1j}
In [15]: for key, val in d.items():
 : print('Key: %s has value: %s' % (key, val))
 :
 Key: a has value: 1
 Key: c has value: 1j
 Key: b has value: 1.2

2.2.6 List Comprehensions

Exercise

Compute the decimals of Pi using the Wallis formula:

\[
\pi = 2 \prod_{i=1}^{\infty} \frac{4i^2}{4i^2 - 1}
\]

The Pi Wallis Solution

2.3 Defining functions

2.3.1 Function definition

In [56]: def foo():
 : print('in foo function')
 : :
In [57]: foo()
in foo function

2.3.2 Return statement

Functions can optionally return values.

In [6]: def area(radius):
 : return 3.14 * radius * radius

2.3.3 Parameters

Mandatory parameters (positional arguments)

In [81]: def double_it(x):
 : return x * 2
 : :
In [82]: double_it()
Out[82]: 6
In [83]: double_it()

Optional parameters (keyword or named arguments)

In [84]: def double_it(x=2):
 : return x * 2
 : :
In [85]: double_it()
Out[85]: 4
In [86]: double_it(3)
Out[86]: 6

Keyword arguments allow you to specify default values.

Warning: Default values are evaluated when the function is defined, not when it is called.

In [124]: bigx = 10
In [125]: def double_it(x=bigx):
 : return x * 2
 : :
In [126]: bigx = 1e9 # No big
In [128]: double_it()
Out[128]: 20

More involved example implementing python’s slicing:
2.3.4 Passed by value

Parameters to functions are passed by value.

When you pass a variable to a function, Python passes the object to which the variable refers (the value). Not the variable itself.

If the value is immutable, the function does not modify the caller’s variable. If the value is mutable, the function modifies the caller’s variable.

In [1]: def foo(x, y):
 ...: x = 23
 ...: y.append(42)
 ...: print('x is ', x)
 ...: print('y is ', y)
 ...
In [2]: a = 77 # immutable variable
In [3]: b = [99] # mutable variable

In [4]: foo(a, b)
x is 23
y is [99, 42]
In [5]: print a
77
In [6]: print b # mutable variable 'b' was modified
[99, 42]

2.3.5 Global variables

Variables declared outside the function can be referenced within the function:

In [114]: x = 5
In [115]: def addx(y):
 ...: return x + y
 ...
In [116]: addx(10)
Out[116]: 15

But these “global” variables cannot be modified within the function, unless declared global in the function.

This doesn’t work:

In [117]: def setx(y):
 ...: x = y
 ...: print('x is ', x)
 ...
In [118]: setx(10)
x is 10
In [120]: x
Out[120]: 5

This works:

In [121]: def setx(y):
 ...: global x
 ...: x = y
 ...: print('x is ', x)
 ...
In [122]: setx(10)
x is 10
In [123]: x
Out[123]: 10

2.3.6 Variable number of parameters

Special forms of parameters:

- *args: any number of positional arguments packed into a tuple
- **kwargs: any number of keyword arguments packed into a dictionary

In [35]: def variable_args(*args, **kwargs):
 ...: print 'args is', args
 ...: print 'kwargs is', kwargs
 ...
In [36]: variable_args(a, b, c=2)
args is (a, b)
kwargs is {'c': 2}
2.3.7 Docstrings

Documentation about what the function does and it’s parameters. General convention:

```python
In [67]: def funcname(params):
    ...:     # Concise one-line sentence describing the function.
    ...:     # Extended summary which can contain multiple paragraphs.
    ...:     # function body
    ...:     pass
```

In [68]: funcname
Type: function
Base Class: <type 'function'>
String Form: <function funcname at 0xeaa0f0>
Namespace: Interactive
File: /Users/cburns/src/scipy2009/.../<ipython console>
Definition: funcname(params)
Docstring:

Concise one-line sentence describing the function.

Extended summary which can contain multiple paragraphs.

2.3.8 Functions are objects

Functions are first-class objects, which means they can be:

- assigned to a variable
- an item in a list (or any collection)
- passed as an argument to another function.

```python
In [38]: va = variable_args
In [39]: va('three', x=1, y=2)
args is ('three',)  
kwargs is {'y': 2, 'x': 1}
```

2.3.9 Methods

Methods are functions attached to objects. You’ve seen these in our examples on lists, dictionaries, strings, etc...

2.4 Exceptions handling in Python

2.4.1 Exceptions

Exceptions are raised by errors in Python:

```python
In [1]: 1/0
---------------------------------------------------------------------------
ZeroDivisionError: integer division or modulo by zero

In [2]: 1 + 'e'
---------------------------------------------------------------------------
TypeError: unsupported operand type(s) for +: 'int' and 'str'

In [3]: d = {1:1, 2:2}
In [4]: d[3]
---------------------------------------------------------------------------
KeyError: 3

In [5]: l = [1, 2, 3]
In [6]: l[4]
---------------------------------------------------------------------------
IndexError: list index out of range

In [7]: l.foobar
---------------------------------------------------------------------------
AttributeError: 'list' object has no attribute 'foobar'
```

Different types of exceptions for different errors.

Exercise

Implement the quicksort algorithm, as defined by wikipedia:

```python
function quicksort(array)
    var list less, greater
    if length(array) 1
        return array
    select and remove a pivot value pivot from array
    for each x in array
        if x < pivot then append x to less
        else append x to greater
    return concatenate(quicksort(less), pivot, quicksort(greater))
```

The Quicksort Solution
2.4.2 Catching exceptions

try/except

```
In [8]: while True:
    ...:     try:
    ...:         x = int(input('Please enter a number: '))
    ...:         break
    ...:     except ValueError:
    ...:         print('That was no valid number. Try again...')
    ...:
    ...:
In [9]: input('Please enter a number: ')
```

```
That was no valid number. Try again...
```

```
In [10]: try:
    ...:     x = int(input('Please enter a number: '))
    ...:     finally:
    ...:         print('Thank you for your input')
    ...:
    ...:
In [11]: input('Please enter a number: ')
```

```
Thank you for your input
```

```
---------------------------------------------------------------------------
ValueError: invalid literal for int() with base 10: 'a'
```

Important for resource management (e.g. closing a file)

Easier to ask for forgiveness than for permission

Don’t enforce contracts before hand.

```
In [12]: def print_sorted(collection):
    ...:     try:
    ...:         collection.sort()
    ...:     except AttributeError:
    ...:         pass
    ...:     print(collection)
    ...:
    ...:
In [13]: print_sorted([1, 3, 2])
[1, 2, 3]
In [14]: print_sorted(set([1, 3, 2]))
set([1, 2, 3])
```

2.4.3 Raising exceptions

- Capturing and re-raising an exception:

```
In [15]: def filter_name(name):
    ...:     try:
    ...:         name = name.encode('ascii')
    ...:     except UnicodeError, e:
    ...:         if name == 'Gaël':
    ...:             print('OK, Gaël')
    ...:         else:
    ...:             raise e
    ...:     return name
In [16]: filter_name('Gaël')
OK, Gaël
In [17]: filter_name('Stéfan')
```

```
UnicodeDecodeError: 'ascii' codec can't decode byte 0xc3 in position 2: ordinal not in range(128)
```

- Exceptions to pass messages between parts of the code:

```
In [18]: x = 0
In [19]: while True:
    ...:     try:
    ...:         x = achilles_arrow(x)
    ...:     except StopIteration:
    ...:         break
    ...:
    ...:
In [20]: x
Out[20]: 0.9990234375
```

Use exceptions to notify certain conditions are met (e.g. StopIteration) or not (e.g. custom error raising)

Warning: Capturing and not raising exception can lead to difficult debugging.
2.5 Reusing code

2.5.1 Importing objects

```
In [1]: import os
In [2]: os
Out[2]: <module 'os' from '/usr/lib/python2.6/os.pyc'>
In [3]: os.listdir('.
Out[3]: ['conf.py', 'basic_types.rst', 'control_flow.rst', 'functions.rst', 'python_language.rst', 'reusing.rst', 'file_io.rst', 'exceptions.rst', 'workflow.rst', 'index.rst']
```

And also:

```
In [4]: from os import listdir
```

Importing shorthands:

```
In [5]: import numpy as np
```

Warning: from os import *
Do not do it.
• Makes the code harder to read and understand: where do symbols come from?
• Makes it impossible to guess the functionality by the context and the name (hint: os.name is the name of the
 OS), and to profit usefully from tab completion.
• Restricts the variable names you can use: os.name might override name, or vise-versa.
• Creates possible name clashes between modules.
• Makes the code impossible to statically check for undefined symbols.

A whole set of new functionality!

```
In [6]: from __future__ import braces
```

2.5.2 Creating modules

File demo.py:

```
def print_b():
    "Prints b"
    print('b')
def print_a():
    "Prints a"
    print('a')
c = 2
d = 3
```

Importing it in IPython:

```
In [6]: import demo
In [7]: demo
```

Warning: Module caching
Modules are cached: if you modify demo.py and re-import it in the old session, you will get the old
one.

Solution:

```
In [10]: reload(demo)
```

2.5.3 '__main__' and module loading

File demo2.py:

```
def print_a():
    "Prints a"
    print('a')
print 'Start'
if __name__ == '__main__':
    print_a()
```

2.5. Reusing code
Introduction to Python for Science, Release 1

2.5. Reusing code

2.6. File I/O in Python

2.6.1 Reading from a file

Open a file with the `open` function:

```python
In [67]: fp = open("holy_grail.txt")
In [68]: fp
Out[68]: <open file 'holy_grail.txt', mode 'r' at 0xeae1ec0>
```

Close a file with the `close` method:

```python
In [73]: fp.close()
In [74]: fp
Out[74]: False
```

Can read one line at a time:

```python
In [69]: first_line = fp.readline()
In [70]: first_line
Out[70]: "GUARD: 'Allo, daffy English kaniggets and Monsieur Arthur-King, who is\n"
```

Or we can read the entire file into a list:

```python
In [75]: all_lines = fp.readlines()
In [76]: all_lines
Out[76]: ['GUARD: 'Allo, daffy English kaniggets and Monsieur Arthur-King, who is\n', ' afraid of a duck, you know! So, we French fellows out-wit you a\n', ' second time!'\n', ' \n', ' \n', ']
```

Exercise

Implement a script that takes a directory name as argument, and returns the list of `.py` files, sorted by name.

Hint: try to understand the docstring of `list.sort`

The Directory Listing Solution

Introduction to Python for Science, Release 1
2.6.2 Iterate over a file

Files are sequences, we can iterate over them:

In [81]: fp = open("holy_grail.txt")
In [82]: for line in fp:
 print line

GUARD: 'Allo, daffy English kaniggets and Monsieur Arthur-King, who is afraid of a duck, you know! So, we French fellows out-wit you a second time!

2.6.3 File modes

- Read-only: r
- Write-only: w
 - Note: Create a new file or overwrite existing file.
- Append a file: a
- Read and Write: r+
- Binary mode: b
 - Note: Use for binary files, especially on Windows.

2.6.4 Writing to a file

Use the write method:

In [83]: fp = open('newfile.txt', 'w')
In [84]: fp.write("I am not a tiny-brained wiper of other people's bottoms!")
In [85]: fp.close()
In [86]: fp = open('newfile.txt')
In [87]: fp.readline()
Out[87]: "CHRIS: I am not a tiny-brained wiper of other people's bottoms!"

Update a file:

In [104]: fp = open('newfile.txt', 'rr')
In [105]: line = fp.readline()
In [111]: line = "CHRIS: " + line + "\n"
In [112]: line
Out[112]: "CHRIS: I am not a tiny-brained wiper of other people's bottoms!\n"

2.6.5 File processing

Often want to open the file, grab the data, then close the file:

In [60]: try:
 for line in fp:
 print line
 finally:
 fp.close()

GUARD: 'Allo, daffy English kaniggets and Monsieur Arthur-King, who is afraid of a duck, you know! So, we French fellows out-wit you a second time!

With Python 2.5 use the with statement:

In [65]: from __future__ import with_statement
In [66]: with open('holy_grail.txt') as fp:
 for line in fp:
 print line

GUARD: 'Allo, daffy English kaniggets and Monsieur Arthur-King, who is afraid of a duck, you know! So, we French fellows out-wit you a second time!

This has the advantage that it closed the file properly, even if an exception is raised, and is more concise than the try-finally.
Note: The `from __future__` line isn’t required in Python 2.6

Exercise
Write a function that will load the column of numbers in `data.txt` and calculate the min, max and sum values.

The Data File I/O Solution

2.7 Standard Library

Note: Reference document for this section:
- Python Essential Reference, David Beazley, Addison-Wesley Professional

2.7.1 os module: operating system functionality

“A portable way of using operating system dependent functionality.”

Directory and file manipulation

Current directory:

```python
In [17]: os.getcwd()
```

List a directory:

```python
In [31]: os.listdir(os.getcwd())
Out[31]: ['.index.rst.swp', '.python_language.rst.swp', '_static', '_templates', 'control_flow.rst', 'debugging.rst', ...
```

Make a directory:

```python
In [32]: os.mkdir('junkdir')
In [33]: 'junkdir' in os.listdir(os.getcwd())
Out[33]: True
```

Rename the directory:

```python
In [36]: os.rename('junkdir', 'foodir')
In [37]: 'junkdir' in os.listdir(os.getcwd())
Out[37]: False
In [41]: os.rmdir('foodir')
In [42]: 'foodir' in os.listdir(os.getcwd())
Out[42]: True
In [41]: os.rmdir('foodir')
In [43]: 'foodir' in os.listdir(os.getcwd())
Out[43]: False
```

os.path: path manipulations

os.path provides common operations on pathnames.

```python
In [70]: fp = open('junk.txt', 'w')
In [71]: fp.close()
In [72]: a = os.path.abspath('junk.txt')
In [73]: os.path.dirname(a)
Out[73]: '/Users/cburns/src/scipy2009/scipy_2009_tutorial/source'
In [74]: os.path.basename(a)
Out[74]: 'junk.txt'
In [78]: os.path.exists('junk.txt')
Out[78]: True
```

Delete a file:

```python
In [44]: fp = open('junk.txt', 'w')
In [45]: fp.close()
In [46]: 'junk.txt' in os.listdir(os.getcwd())
Out[46]: True
In [47]: os.remove('junk.txt')
In [48]: 'junk.txt' in os.listdir(os.getcwd())
Out[48]: False
```
Running an external command

```
In [8]: os.system('ls -a')
```

```
conf.py debug_file.py demo2.py demo.py demo.pyc my_file.py my_file.py~
conf.py~ demo2.py demo2.pyc demo.py~ my_file.py pi_wallis_image.py
```

Walking a directory

```
In [10]: for dirpath, dirnames, filenames in os.walk(os.curdir):
   ....:     for fp in filenames:
   ....:         print os.path.abspath(fp)
   ....:
/Users/cburns/src/scipy2009/scipy_2009_tutorial/source/basic_types.rst
/Users/cburns/src/scipy2009/scipy_2009_tutorial/source/control_flow.rst
...  
```

Environment variables:

```
In [9]: import os
```

```
In [10]: os.environ.keys()
```

```
['TERM_PROGRAM_VERSION', 'FSLOG', 'FSLDIR', 'FSLREMOTECALL', '
 USER', 'HOME', 'PATH', 'SHELL', 'EDITOR', '
 WORKON_HOME', 'PYTHONPATH', '

```

2.7.2 shutil: high-level file operations

The `shutil` provides useful file operations:

- `shutil.rmtree`: Recursively delete a directory tree.
- `shutil.move`: Recursively move a file or directory to another location.
- `shutil.copy`: Copy files or directories.

2.7.3 glob: Pattern matching on files

The `glob` module provides convenient file pattern matching.

Find all files ending in `.txt`:

```
In [18]: import glob
```

```
In [19]: glob.glob('*.txt')
Out[19]: ['holy_grail.txt', 'junk.txt', 'newfile.txt']
```

2.7.4 sys module: system-specific information

System-specific information related to the Python interpreter.

- Which version of python are you running and where is it installed:

```
In [117]: sys.platform
Out[117]: 'darwin'
```

```
In [118]: sys.version
Out[118]: '2.5.2 (r252:60911, Feb 22 2008, 07:57:53) 
 [GCC 4.0.1 (Apple Computer, Inc. build 5363)]'
```

```
In [119]: sys.prefix
Out[119]: '/Library/Frameworks/Python.framework/Versions/2.5' 
```

- List of command line arguments passed to a Python script:

```
In [100]: sys.argv
Out[100]: ['/Users/cburns/local/bin/ipython']
```
sys.path is a list of strings that specifies the search path for modules. Initialized from PYTHONPATH:

```python
In [121]: sys.path
Out[121]:
['',
 '/Users/cburns/local/bin',
 '/Users/cburns/local/lib/python2.5/site-packages/grin-1.1-py2.5.egg',
 '/Users/cburns/local/lib/python2.5/site-packages/argparse-0.8.0-py2.5.egg',
 '/Users/cburns/local/lib/python2.5/site-packages/urwid-0.9.7.1-py2.5.egg',
 '/Users/cburns/local/lib/python2.5/site-packages/yolk-0.4.1-py2.5.egg',
 '/Users/cburns/local/lib/python2.5/site-packages/virtualenv-1.2-py2.5.egg', ...
```

2.7.5 pickle: easy persistence

Useful to store arbitrary objects to a file. Not safe or fast!

```python
In [1]: import pickle
In [2]: l = [1, None, 'Stan']
In [3]: pickle.dump(l, file('test.pkl', 'w'))
In [4]: pickle.load(file('test.pkl'))
Out[4]: [1, None, 'Stan']
```

Exercise

Write a program to search your PYTHONPATH for the module site.py.

The PYTHONPATH Search Solution

Context

- Numerical algorithms are not a special case of computing, the need for them arises simultaneously with the need for other tools.
- Exploratory coding, easy reading!
- Visualization: don’t play with numbers without plotting, or you probably won’t understand what you are doing

Core scientific libraries

<table>
<thead>
<tr>
<th>Library</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>numpy</td>
<td>http://www.scipy.org/Download</td>
</tr>
<tr>
<td>ipython</td>
<td>http://ipython.scipy.org/</td>
</tr>
<tr>
<td>matplotlib</td>
<td>http://matplotlib.sourceforge.net/</td>
</tr>
<tr>
<td>scipy</td>
<td>http://www.scipy.org/Download</td>
</tr>
<tr>
<td>mayavi</td>
<td>http://code.enthought.com/projects/mayavi/</td>
</tr>
</tbody>
</table>

Use distributions

- Python(x,y): http://www.pythonxy.com

Resources

- http://docs.scipy.org/
- numpys.lookfor
- Python: Les fondamentaux du langage - La programmation pour Les scientifiques, Matthieu BRUCHER, editions ENI.
- Python Scripting for Computational Science, Hans Petter Langtangen, Springer
- Beginning Python visualization, Shai Vaingast, Apress

3.1 Numpy: array computing
3.1.1 Array computing

Doing operations on many numbers

- Standard numerical computing = loops
  ```python
def square(data):
    for i in range(len(data)):
      data[i] = data[i]**2
    return data
  ```
  ```
In [1]: %timeit data = range(1000) ; square(data)
1000 loops, best of 3: 314 us per loop
  ```

- Vector computing: loops are replaced by vector operations, on arrays
  ```python
def square(data):
    return data**2
  ```
  ```
In [2]: %timeit data = np.arange(1000) ; square(data)
100000 loops, best of 3: 10.6 us per loop
  ```

Multidimensional arrays

```python
>>> a = np.arange(10)
>>> a
array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9])
```

```python
>>> b = np.arange(10, 20, 3)
>>> b
array([ 10,  13,  16,  19])
```

Creating arrays

- With constants:
  ```python
  >>> np.ones((2, 3))
  array([[ 1.,  1.,  1.],
          [ 1.,  1.,  1.]])
  ```

- Arrays contain typed entries:
  ```python
  >>> np.ones(3, dtype=np.int)
  array([1, 1, 1])
  ```

- Creating a grid:
  ```python
  >>> x, y = np.indices((2, 3))
  >>> x
  array([[0, 0, 0],
          [1, 1, 1]])
  >>> y
  array([[0, 1, 2],
          [0, 1, 2]])
  >>> z = x+y
  >>> z
  array([[0+0j, 1+0j, 2+0j],
          [1+1j, 2+1j, 3+1j]])
  ```

Views and copies

```python
>>> x = np.zeros(10)
array([ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.])
```

```python
>>> x[0] = 1
>>> x
array([ 1.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.])
```

```python
>>> y = x.copy()
>>> y[0] = 2
>>> y
array([ 2.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.])
```

Slicing

Multidimensional traversing of arrays

```python
>>> a[0:3, 3]
array([4., 5.])
```

```python
>>> a[3:4, 0:4]
array([[44, 45],
        [54, 55]])
```

```python
>>> a[:, 2]
array([20, 22, 24])
```

```python
>>> a[:, 2:][1]
array([20, 22, 24])
```
An example: calculating the laplacian

\[
\text{image}[i:-1, j:-1] = (\text{image}[i-2, j-1] - \text{image}[i+1, j-1] + \\
\text{image}[i-1, j+2] - \text{image}[i+1, j+2] + \\
\text{image}[i+1, j-1] - \text{image}[i-1, j-1]) / 8
\]

In [3]: import pylab as pl
In [4]: l = sp.lena()
In [5]: pl.imshow(l, cmap=pl.cm.gray)
In [6]: e = l[1:-2, 1:-1] - l[2:, 1:-1] - l[1:-1, :-2] - l[1:-1, 2:]
In [7]: pl.imshow(e, cmap=pl.cm.gray)

With integer arrays

- Example: sorting a vector with another one:

```python
>>> a, b = np.random.random_integers(10, size=(2, 4))
>>> a
array([ 8, 6, 2, 9])
>>> b
array([ 8, 9, 3, 10])
>>> a_order = np.argsort(a)
>>> a_order
array([2, 1, 0, 3])
>>> b[a_order]
array([ 3, 9, 8, 10])
```

Using masks

- Zeroing out all the even elements of a table:

```python
>>> a = np.arange(10)
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> a_order = np.argsort(a)
>>> a_order
array([0, 1, 2, 3])
>>> b[a_order]
array([1, 3, 5, 7, 9])
```

- Applying a mask to a grid to select the center of an image:

```python
In [8]: n, m = l.shape
In [9]: x, y = np.indices((n, m))
In [10]: distance = np.sqrt((x - 0.5)*n**2 + (y - 0.5)*m**2)
In [11]: distance > 200 = 255
In [12]: pl.imshow(l, cmap=pl.cm.gray)
```

3.1.2 Advanced indexing

With integers or masks
3.1.3 Broadcasting

Multidimensional operations

- You can add a number to an array:

```python
>>> a = np.ones((1, 1))
>>> a
array([1.])
>>> a + 1
array([2.])
```

- And what if we add two arrays of different shapes?

```python
>>> b = 2*np.ones((2, 1))
>>> b
array([[2.],
       [2.]])
>>> a + b
array([[3., 3., 3.],
       [3., 3., 3.]])
```

- Dimensions are matched:

```python
np.sqrt(x*x + y*y + z*z)
```
3.1. Numpy: array computing

Without broadcasting

```python
>>> x, y, z = np.mgrid[-100:100, -100:100, -100:100]
>>> print x.shape, y.shape, z.shape
(200, 200, 200) (200, 200, 200) (200, 200, 200)
>>> r = np.sqrt(x**2 + y**2 + z**2)
```

- Timing: 2.3s creating x, y, z: 0.5s, calculation of r: 1.8s
- Memory: 64Mo per array, 6 arrays, (x, y, z, r) and 2 temporary arrays
 -> 400Mb
- 200^3 floating point operations per array:
 48 million operations.

With broadcasting

```python
>>> x, y, z = np.ogrid[-100:100, -100:100, -100:100]
>>> print x.shape, y.shape, z.shape
(200, 1, 1) (1, 200, 1) (1, 1, 200)
>>> r = np.sqrt(x**2 + y**2 + z**2)
```

- Timing: 1.1s creating x, y, z: 6ms
- Memory: x, y, z: 1.6Kb, r: 64Mo, and one 64Mo temporary array
 -> 120Mb
- 16 million operations

Numpy: a structured view on memory, with associated operations

- identical data type (dtype)
- fast indexing
- views and copies
- costless reshape
- shape-aware operations (broadcasting)

3.2 Matplotlib: scientific 2D plotting

Matplotlib: provides a matlab-like plotting interface, *pylab*

Note: Reference: the documentation is excellent: http://matplotlib.sourceforge.net/
3.2.1 Lines

```python
import numpy as np
import matplotlib.pyplot as plt
from scipy.special import jn

x = np.linspace(-5, 15, 100)
for i in range(10):
    y = jn(i, x)
    plt.plot(x, y, label=f'J_{i}

plt.title('Fonctions de Bessel')
plt.legend()
```

3.2.2 2D arrays

```python
import numpy as np
import matplotlib.pyplot as plt

l = sp.lena()
plt.imshow(l, cmap=plt.cm.gray)
plt.axis('off')
```

3.2.3 Points

```python
import numpy as np
import matplotlib.pyplot as plt

x, y, value = np.random.randn(size=(3, 50))
plt.scatter(x, y, np.abs(50 * value), c=value)
```

3.2.4 Vectors

```python
import numpy as np
import matplotlib.pyplot as plt

x, y = np.mgrid[-5:5, -5:5]
u = -x
```
3.3 Scipy: numerical and scientific toolbox

`scipy` is mainly composed of task-specific sub-modules:

<table>
<thead>
<tr>
<th>Module</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cluster</td>
<td>Vector quantization / Kmeans</td>
</tr>
<tr>
<td>fitpack</td>
<td>Fourier transform</td>
</tr>
<tr>
<td>integrate</td>
<td>Integration routines</td>
</tr>
<tr>
<td>interpolate</td>
<td>Interpolation</td>
</tr>
<tr>
<td>io</td>
<td>Data input and output</td>
</tr>
<tr>
<td>linalg</td>
<td>Linear algebra routines</td>
</tr>
<tr>
<td>maxentropy</td>
<td>Routines for fitting maximum entropy models</td>
</tr>
<tr>
<td>ndimage</td>
<td>n-dimensional image package</td>
</tr>
<tr>
<td>odr</td>
<td>Orthogonal distance regression</td>
</tr>
<tr>
<td>optimize</td>
<td>Optimization</td>
</tr>
<tr>
<td>signal</td>
<td>Signal processing</td>
</tr>
<tr>
<td>sparse</td>
<td>Sparse matrices</td>
</tr>
<tr>
<td>spatial</td>
<td>Spatial data structures and algorithms</td>
</tr>
<tr>
<td>special</td>
<td>Any special mathematical functions</td>
</tr>
<tr>
<td>stats</td>
<td>Statistics</td>
</tr>
</tbody>
</table>

3.3.1 IO

- Load and save matlab files:

```python
>>> from scipy import io
>>> struct = io.loadmat('file.mat', struct_as_record=True)
>>> io.savemat('file.mat', struct)
```

See also:

- Load text files:

```python
np.loadtxt/np.savetxt
```

3.3.2 Optimization

- Finding zeros of a function:

```python
>>> def f(x):
...     return x*x*x - x**2 - 10

>>> from scipy import optimize

>>> optimize.fsolve(f, 1)
(2.5445115283877615,)
```

- Curve fitting:

```python
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from scipy import optimize

>>> x = np.linspace(0, 10, 100)
>>> y = np.sin(x) + 0.5*np.random.normal(size=100)

>>> def test_func(x, a, f, phi):
...     return a*np.sin(f*x+phi)

>>> (a, f, phi), _ = optimize.curve_fit(test_func, x, y)

>>> plt.plot(x, test_func(x, a, f, phi), '--', linewidth=3)
```

- Clever loading of text/csv files:

```python
np.genfromtxt/np.recfromcsv
```

- Fast an efficient binary format:

```python
np.save/np.load
```
3.3.3 Statistics and random numbers

```python
>>> a = np.random.normal(size=1000)
>>> bins = np.arange(-4, 5)
>>> bins
array([-4, -3, -2, -1, 0, 1, 2, 3, 4])
>>> histogram = np.histogram(a, bins=bins)
>>> bins
array([-3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5])
>>> b = stats.norm.pdf(bins)
```

```
In [1]: pl.plot(bins, histogram)
In [2]: pl.plot(bins, b)
```

3.3.4 Image processing

```python
from scipy import ndimage
l = np.lena()
pl.imshow(ndimage.gaussian_filter(l, 5), cmap=pl.cm.gray)
pl.imshow(ndimage.gaussian_gradient_magnitude(l, 3), cmap=pl.cm.gray)
```

3.3.5 Interpolation

```python
x = np.arange(10)
y = np.sin(x)
pl.plot(x, y, 'o', markersize=10)
from scipy import interpolate
f = interpolate.interp1d(x, y)
X = np.linspace(0, 9, 100)
pl.plot(X, f(X), 'r--')
f = interpolate.interp1d(x, y, kind='cubic')
X = np.linspace(0, 9, 100)
pl.plot(X, f(X), 'g--')
```
3.3.6 Interlude

```python
import scipy as sp
import numpy as np
import pylab as pl
l = sp.lena()
l = l[235:235+153, 205:162+205]
t = pl.imread('tarek.jpg')
t = t[:: -1, ::]
t = t.sum(axis=-1)
pl.figure()
pl.imshow(t, cmap=pl.cm.gray)
pl.axis('off')
pl.figure()
pl.imshow(l, cmap=pl.cm.gray)
pl.axis('off')
t = t.astype(np.float)
t /= t.max()
l = l.astype(np.float)
l /= l.max()
pl.figure()
pl.imshow(t + l, cmap=pl.cm.gray)
pl.axis('off')
```

3.3.7 Lineaire Algebra

"whitening" Lena:

```python
rows, weight, columns = np.linalg.svd(l, full_matrices=False)
l_ = np.dot(rows, columns)
```

3.3.8 FFT

Low pass filtering:

```python
import numpy as np
import pylab as pl
from scipy import fftpack
t = np.arange(0, 10, 0.1)
s = np.sin(np.pi * t) + np.cos(10 * np.pi * t)
pl.plot(t, s)
freq = fftpack.fftfreq(len(s), d=1)
fft = fftpack.fft(s)
fft[np.abs(freq) > 1] = 0
s_ = fftpack.ifft(fft)
pl.plot(t, s_, linewidth=3)
```

3.3.9 Signal processing

- Detrend:

```python
import numpy as np
import pylab as pl
from scipy import signal
t = np.linspace(0, 5, 100)
x = t + np.random.normal(size=100)
pl.plot(t, x, linewidth=3)
pl.plot(t, signal.detrend(x), linewidth=3)
```
CHAPTER 4

Python patterns in neuro image

4.1 Images and Mask

An fMRI dataset: 4D array, (x, y, z, t)

```python
im = np.random.random((8, 5, 10, 11))
```

A mask (ROI, or brain): 3D array, (x, y, z)

```python
mask = (np.random.random((8, 5, 10)) > .5)
```

Corresponding time series: 2D array, (voxel, t)

```python
time_series = im[mask]
```

4.2 Memory management

- In place operations:

```python
time_series -= time_series.mean(axis=-1)[..., np.newaxis]
time_series /= time_series.std(axis=-1)[..., np.newaxis]
```

- For loops rather than axis:

```python
from scipy import signal

for time_serie in time_series:
    time_serie[:] = signal.detrend(time_serie)
```

Note: `time_serie` is a view on `time_series`. `time_serie[:]` gives an in-place operation.

- Memmappining (np.load):

```python
np.save('time_series.npy', time_series)
time_series = np.load('time_series.npy', mmap_mode='r')
```
4.3 Masked arrays

Data, with many dimensions/parameters: subject, session, ROI, time:

```python
data = np.ones((3, 4, 10)) # subject, ROI, time
```

But: missing data, crappy data. (babies anyone?):

```python
bad_data = np.zeros(data.shape, dtype=np.bool)
# For subject 0, ROI 1 is outside of brain
bad_data[0, 1, :] = True
# Subject 1 moved between time 3 and 5:
bad_data[1, :, 3:6] = True
```

"Mask" the bad data: masked arrays (np.ma):

```python
good_data = np.ma.masked_array(data, mask=bad_data)
```

How many useful ROIs:

```
>>> good_data.sum(axis=1)
masked_array(data =
[[3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0]
 [4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0]
 [4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0]],
 mask =
[[False False False False False False False False False False]
 [False False False False False False False False False False]
 [False False False False False False False False False False]],
    fill_value = 1e+20)
```

What's the mean across time, not counting bad data:

```python
masked_array(data =
[[1.0 1.0 1.0 1.0]
 [1.0 1.0 1.0 1.0]],
 mask =
[[False True False False]
 [False False False False]],
    fill_value = 1e+20)
```

Note: Much better than NaNs, the above would not be possible.

```
Note: Also good for thresholding maps.
```

4.4 Dealing with labels

- ndimage.labels:

```python
l = np.lena()[200:300, 230:360]
pl.imshow(l, cmap=pl.cm.gray)
```

```python
blacks = l < 80
pl.imshow(blacks, cmap=pl.cm.gray)
```

```python
from scipy import ndimage
label_im, labels = ndimage.label(blacks)
imshow(label_im, cmap=pl.cm.spectral)
```

- ndimage.mean, ndimage.maximum, ndimage.maximum_position...:

```python
means = ndimage.mean(l, labels=label_im, index=np.arange(labels))
```

Clean up small connect components:

```python
labels = np.arange(labels)
size = ndimage.sum(blacks, labels=label_im, index=labels)
for s, index in zip(size, labels):
    if s < 40:
        label_im[label_im == index] = 0
```
Reassign labels np.searchsorted:

```python
labels = np.unique(label_im)
label_im = np.searchsorted(labels, label_im)
```

```
>>> ndimage.center_of_mass(label_im.astype(np.float), label_im.astype(np.float), index=labels)
[(nan, nan),
 (14.303212851405622, 8.6425702811244989),
 (6.0357142857142856, 24.910714285714285),
 (62.170854271356781, 33.984924623115575),
 (nan, nan),
 (nan, nan)]
```

```
>>> ndimage.find_objects(label_im==4)[0]
(slice_x, slice_y) = ndimage.find_objects(label_im==4)[0]
eye = l[slice_x, slice_y]
plt.imshow(eye, cmap=plt.cm.gray)
```

5.1 A simple example

Warning: Start `ipython -wthread`
import numpy as np

x, y = np.mgrid[-10:10:100j, -10:10:100j]
x = np.sqrt(x**2 + y**2)
z = np.sin(x)/x

from enthought.mayavi import mlab

mlab.surf(z, warp_scale='auto')
mlab.outline()
mlab.axes()
5.2.4 Arbitrary regular mesh

```
In [13]: mlab.clf()
In [14]: phi, theta = np.mgrid[0:pi:11j, 0:2*pi:11j]
In [15]: x = sin(phi)*cos(theta)
In [16]: y = sin(phi)*sin(theta)
In [17]: z = cos(phi)
In [18]: mlab.mesh(x, y, z)
```

Note: A surface is defined by points connected to form triangles or polygons. In `mlab.func` and `mlab.mesh`, the connectivity is implicitly given by the layout of the arrays. See also `mlab.triangular_mesh`.

Our data is often more than points and values; it needs some connectivity information.

5.2.5 Volumetric data

```
In [20]: mlab.clf()
In [21]: x, y, z = np.mgrid[-5:5:64j, -5:5:64j, -5:5:64j]
In [22]: values = x*x+0.5*y*y + z*z+2.0
In [23]: mlab.contour3d(values)
Out[24]: <enthought.mayavi.modules.iso_surface.IsoSurface object at 0xcfe392c>
```

This function works with a regular orthogonal grid:
5.3 Figures and decorations

5.3.1 Figure management

<table>
<thead>
<tr>
<th>Get the current figure:</th>
<th>mlab.gcf()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear the current figure:</td>
<td>mlab clf()</td>
</tr>
<tr>
<td>Set the current figure:</td>
<td>mlab.figure(1, bgcolor=(1, 1, 1), fgcolor=(0.5, 0.5, 0.5))</td>
</tr>
<tr>
<td>Save figure to image file:</td>
<td>mlab.savefig('foo.png', size=(300, 300))</td>
</tr>
<tr>
<td>Change the view:</td>
<td>mlab.view(azimuth=45, elevation=54, distance=1.)</td>
</tr>
</tbody>
</table>

5.3.2 Changing plot properties

Example docstring: `mlab.mesh`
Plots a surface using grid-spaced data supplied as 2D arrays.

Function signatures:

```python
mlab.mesh(x, y, z, ...
```

- `x, y, z` are 2D arrays, all of the same shape, giving the positions of the vertices of the surface. The connectivity between these points is implied by the connectivity on the arrays.
- For simple structures (such as orthogonal grids) prefer the surf function, as it will create more efficient data structures.

Keyword arguments:

- **color** the color of the vtk object. Overrides the colormap, if any, when specified. This is specified as a triplet of float ranging from 0 to 1, e.g. (1, 1, 1) for white.
- **colormap** type of colormap to use
- **extent** [xmin, xmax, ymin, ymax, zmin, zmax] Default is the x, y, z arrays extents. Use this to change the extent of the object created.
- **figure** Figure to populate.
- **line_width** The width of the lines, if any used. Must be a float. Default: 2.0
- **mask** boolean mask array to suppress some data points.
- **mask_points** If supplied, only one out of ‘mask_points’ data point is displayed. This option is useful to reduce the number of points displayed on large datasets. Must be an integer or None.
- **mode** the mode of the glyphs. Must be ‘2darrow’ or ‘2dcircle’ or ‘2dcross’ or ‘2dflash’ or ‘2ddiamond’ or ‘2dhooked_arrow’ or ‘2dsquare’ or ‘2dthick_cross’ or ‘2dtriangle’ or ‘2dvertex’ or ‘arrow’ or ‘cone’ or ‘cube’ or ‘cylinder’ or ‘point’ or ‘sphere’. Default: sphere
- **name** the name of the vtk object created.
- **representation** the representation type used for the surface. Must be ‘surface’ or ‘wireframe’ or ‘points’ or ‘mesh’ or ‘fancymesh’. Default: surface
- **resolution** The resolution of the glyph created. For spheres, for instance, this is the number of divisions along theta and phi. Must be an integer. Default: 8
- **scalars** optional scalar data.
- **scale_factor** scale factor of the glyphs used to represent the vertices, in fancymesh mode. Must be a float. Default: 0.05
- **scale_mode** the scaling mode for the glyphs (‘vector’, ‘scalar’, or ‘none’).
- **transparent** make the opacity of the actor depend on the scalar.
- **tube_radius** radius of the tubes used to represent the lines, in mesh mode. If None, simple lines are used.
- **tube_sides** number of sides of the tubes used to represent the lines. Must be an integer. Default: 6
- **vmax** vmax is used to scale the colormap. If None, the max of the data will be used.
- **vmin** vmin is used to scale the colormap. If None, the min of the data will be used.

Example:

```python
In [1]: import numpy as np

In [2]: r, theta = np.mgrid[0:10, -np.pi:np.pi:10j]

In [3]: x = r*np.cos(theta)

In [4]: y = r*np.sin(theta)

In [5]: z = np.sin(r)/r
```
5.3.3 Decorations

In [9]: mlab.colorbar(Out[7], orientation='vertical')
Out[9]: <tvtk_classes.scalar_bar_actor.ScalarBarActor object at 0xd897f8c>

In [10]: mlab.title('polar mesh')
Out[10]: <enthought.mayavi.modules.text.Text object at 0xd8ed38c>

In [11]: mlab.outline(Out[7])
Out[11]: <enthought.mayavi.modules.outline.Outline object at 0xdd21b6c>

In [12]: mlab.axes(Out[7])
Out[12]: <enthought.mayavi.modules.axes.Axes object at 0xd2e4bce>

Warning: extent: If we specified extents for a plotting object, 'mlab.outline' and 'mlab.axes' don’t get them by default.

5.4 Interaction

Click on the ‘Mayavi’ button in the scene, and you can control properties of objects with dialogs.

Click on the red button, and it generates lines of code.
CHAPTER 6

Debugging

The python debugger pdb: http://docs.python.org/library/pdb.html

6.1 Coding best practices to avoid getting in trouble

Brian Kernighan

“Everyone knows that debugging is twice as hard as writing a program in the first place. So if you’re as clever as you can be when you write it, how will you ever debug it?”

- We all write buggy code. Accept it. Deal with it.
- Write your code with testing and debugging in mind.
- Keep It Simple, Stupid (KISS).
 - What is the simplest thing that could possibly work?
- Don’t Repeat Yourself (DRY).
 - Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
 - Constants, algorithms, etc...
- Try to limit interdependencies of your code. (Loose Coupling)
- Give your variables, functions and modules meaningful names.

6.2 The debugger

A debugger allows you to inspect your code interactively. Specifically it allows you to:
- View the source code.
- Walk up and down the call stack.
- Inspect values of variables.
- Modify values of variables.
- Set breakpoints.

Ways to launch the debugger:
1. Postmortem, launch debugger after module errors.
2. Enable debugger in ipython and automatically drop into debug-mode on error.
3. Launch the module with the debugger.

6.2.1 Postmortem

Situation: You’re working in ipython and you get a traceback. Type %debug and drop into the debugger.

```
In [6]: run index_error.py
---------------------------------------------------------------------------
IndexError Traceback (most recent call last)
   6 7 if __name__ == '__main__':
----> 8 index_error()
9
10

   3 def index_error():
   4     lst = list('foobar')
----> 5     print lst[len(lst)]
6
7 if __name__ == '__main__':

IndexError: list index out of range
```

```
In [7]: %debug
   4     lst = list('foobar')
----> 5     print lst[len(lst)]
   6
```

```
ipdb> len(lst)
6
ipdb> print lst[len(lst)-1]
```

6.2. The debugger
6.2.2 Debugger launch

Situation: You believe a bug exists in a module but are not sure where.

Launch the module with the debugger and step through the code in the debugger.

In [38]: run -d debug_file.py
*** Blank or comment ***
*** Blank or comment
NOTE: Enter ‘c’ at the ipdb> prompt to start your script.
> <string>(1)<module>()
Step into code with step:
1 3 Data is stored in data.txt.
----> 4
5
Set a breakpoint at the load_data function:
ipdb> break load_data
ipdb> break

Name	Type	Disp	Enb	Where

List the code with list:

ipdb> list
1 ***Script to read in a column of numbers and calculate the min, max and sum.
2 1 3 Data is stored in data.txt.
----> 4 ***
5 6 def parse_data(data_string):
7 data = []
8 for x in data_string.split(','):
9 data.append(x)
10 return data
11
ipdb> list
2 12 def load_data(filename):
13 fp = open(filename)
14 data_string = fp.read()
15 fp.close()
16 return parse_data(data_string)

Continue execution to next breakpoint with continue:

ipdb> continue
13 fp = open(filename)
----> 14 data_string = fp.read()
15 fp.close()

I don’t want to debug python’s open function, so use the next command to continue execution on the next line:

ipdb> next
14 data_string = fp.read()
----> 15 fp.close()
16 return parse_data(data_string)

Step into parse_data function with step command:

ipdb> step
---Call---
5

Continue stepping through code and print out values with the print command:

ipdb> print
17 if __name__ == '__main__':
18 data = load_data('exercises/data.txt')
19 print('min: %f' % min(data)) # 10.20
21 print('max: %f' % max(data)) # 61.30

Step into data.append(x) function with step command:
You can also walk up and down the call stack with \texttt{u(p)} and \texttt{d(own)}:

\begin{verbatim}
ipython> list
 4 ***
 5 6 def parse_data(data_string):
 7 data = []
 8 for x in data_string.split(',.'):
 9 data.append(x)
 10 return data

ipython> up
 4 12 def load_data(filename):
 5 fp = open(filename)
 6 data_string = fp.read()

ipython> list
 4 ***
 5 12 def load_data(filename):
 6 fp = open(filename)
 7 data_string = fp.read()
 8 return parse_data(data_string)

ipython> up
 4 18 if __name__ == '__main__':
 5 data = load_data('exercises/data.txt')
 6 print('min: %f' % min(data)) # 10.20
 7 print('max: %f' % max(data)) # 61.30
\end{verbatim}
CHAPTER 7

Profiling Python code

No optimization without measuring!
• Measure: profiling, timing
• "Premature optimization is the root of all evil"

7.1 Timeit

In IPython, to time elementary operations:

```
In [1]: import numpy as np
In [2]: a = np.arange(1000)
In [3]: %timeit a**2
100000 loops, best of 3: 5.73 us per loop
In [4]: %timeit a**2.1
1000 loops, best of 3: 154 us per loop
In [5]: %timeit a**a
100000 loops, best of 3: 5.56 us per loop
```

7.2 Profiler

Useful when you have a large program to profile.

```
import numpy as np
from scipy import linalg
from ica import fastica
@profile
```

```python
def test():
    data = np.random.random((5000, 100))
    u, s, v = linalg.svd(data)
    pca = np.dot(u[:, :10], data)
    results = fastica(pca, whiten=False)

test()
```

```
In [1]: !run -t demo.py
IPython CPU timings (estimated):
User  : 14.3929 s.
System: 0.256016 s.
In [2]: %run -p demo.py
916 function calls in 14.551 CPU seconds
Ordered by: internal time
ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        2     0.054   0.027   0.054   0.027 function_base.py:645(asarray_chkfinite)
        1     0.017  0.017  0.017  0.017 {method 'random_sample' of 'mtrand.RandomState' objects}
        54     0.011   0.000  0.011  0.000 {numpy.core._dotblas.dot}
        2     0.005   0.003  0.005  0.003 {method 'any' of 'numpy.ndarray' objects}
        6     0.001   0.000  0.001  0.000 ica.py:195(gprime)
        6     0.001   0.000  0.001  0.000 ica.py:192(g)
       172     0.000   0.000   0.000  0.000 {method 'view' of 'numpy.ndarray' objects}

107 0.000  0.000  0.000  0.000 defmatrix.py:239(__array_finalize__)
    7 0.000  0.000  0.000  0.000 ica.py:58(_ica_par)
    1 0.001  0.001  0.001  14.551 demo.py:1(<module>)
   29 0.000  0.000  0.000  0.000 numeric.py:180(asarray)
   13 0.000  0.000  0.000  0.000 defmatrix.py:43(_sym_decorrelation)
   21 0.000  0.000  0.000  0.000 defmatrix.py:207(_mul_)
   28 0.000  0.000  0.000  0.000 defmatrix.py:229(_array_finalize__)
    2 0.000  0.000  0.000  0.000 ica.py:97(fastica)
    5 0.000  0.000  0.000  0.000 ica.py:797(_dot)
   14 0.000  0.000  0.000  0.000 function_base.py:484(asarray)
   14 0.000  0.000  0.000  0.000 function_base.py:380(_check_axis)
   13 0.000  0.000  0.000  0.000 ica.py:198(_check_axis)
```

7.2. Profiler

```
7.3 Line-profile

```python
@profile
def test():
 data = np.random.random((5000, 100))
 u, s, v = linalg.svd(data)
 pca = np.dot(u[:, :10], data)
 results = fastica(pca.T, whiten=False)
```

Wrote profile results to demo.py.lprof

File: demo.py
Function: test at line 5
Total time: 14.2793 s

<table>
<thead>
<tr>
<th>Line #</th>
<th>Hits</th>
<th>Time</th>
<th>Per Hit</th>
<th>% Time</th>
<th>Line Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>@profile</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>def test():</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The SVD is taking all the time. We need to optimise this ligne.

```
~ $ kernprof.py -l -v demo.py
```

Optimising numpy code
1. avoiding loops
2. algorithmic optimisation (eg. not doing the same thing more than once)
3. memory/number of operations minimization and trade-off

Avoiding loops
- **Fancy indexing**
- Know the numpy library well
- **Reshaping, striding**
- Think different

Algorithmic optimisation
- See the forest, not the trees:
  - Think before you code
  - Refactor
- Know the standard scientific library (scipy)
  - [http://docs.scipy.org/](http://docs.scipy.org/)
  - `numpy.lookfor`
- Know your math:
  - wrong:
    ```python
 import numpy as np
 _, singular_values, _ = np.linalg.svd(np.dot(X.T, X))
    ```
  - harder, better, faster stronger:
    ```python
 from scipy import linalg
 singular_values = np.linalg.eigvalsh(np.dot(X.T, X))
    ```

Minimize memory/number of operations
8.1 Broadcasting

8.1.1 Broadcasting definition

Applying operators on arrays of different shapes:

- Adding a scalar and an array of course works:

```python
>>> import numpy as np
>>> a = np.ones((3, 1))
>>> a
array([[1.],
 [1.],
 [1.]])
```

- What about adding (or multiplying) two arrays of different shape?

```python
>>> b = 2*np.ones((2, 1))
>>> b
array([[2.],
 [2.]])
```

8.1.2 Applications

- Yet another way of avoiding loops
- Decreases memory consumption

Creating a 3D grid of size n

```python
np.sqrt(x**2 + y**2 + z**2)
```
Without broadcasting

```python
>>> x, y, z = np.mgrid[-100:100, -100:100, -100:100]
>>> print x.shape, y.shape, z.shape
(200, 200, 200) (200, 200, 200) (200, 200, 200)
>>> r = np.sqrt(x**2 + y**2 + z**2)
```

These three lines take 2.3s: the creation of `x, y, z` takes 0.5s, and the calculation of `r` takes 1.8s.
The total memory used is 64Mb per array. There are 4 named arrays (`x, y, z`) and at least 2 temporary arrays are created. Thus around 400Mb are used.

Squaring each array take 200^3 operations, as well as the two additions, and the call to `np.sqrt`. Thus a total of 48 million operations.

With broadcasting

```python
>>> x, y, z = np.ogrid[-100:100, -100:100, -100:100]
>>> print x.shape, y.shape, z.shape
(200, 1, 1) (1, 200, 1) (1, 1, 200)
>>> r = np.sqrt(x**2 + y**2 + z**2)
```

These lines take 1.1s second, with only 6ms to create the arrays.
The three input arrays take only 1.6Kb. The output array 64Mb, and there is not more than a 64Mb and a 320kb temporary array created. Around 120Mb are used.

Squaring each array takes 200 operations, the first addition is 200^2 = 40 thousands operations, and the second, as well as the call to `np.sqrt`, is 200^3 = 8 million operations. Thus around 16 million operations are performed.

Looking at the relative timings between non-broadcasted and broadcasted versions, we can see that they do not scale proportionally to the number of operations. Broadcasting does take some time.

### Monte-Carlo density evaluation

Density evaluation of \( f = A \sin(k_1 X) + B \sin(k_2 Y) \) using the probability distribution of `A, B, X` and `Y`.

Strategy: sample `f` with huge arrays of the random variables, and build an histogram of the results.

#### 8.1. Broadcasting

With broadcasting, sample `n` values for each `A, B, X` and `Y`, along a different direction each time. `n^4` samples for `f`.

**Warning:** Unwanted correlations are introduced between the random variables.

#### 8.2 Views and strides

##### 8.2.1 Views and copies

**Views**

Two arrays can point to the same data:

```python
>>> import numpy as np
>>> a = np.arange(10)
>>> b = a[3:7]
```

No memory duplication

**How to tell: inspecting the data buffer**

- Look at the base pointer of the data buffer, and the extent:
  ```
 >>> b.base.data + len(b.data)
 140052124
 >>> a.ctypes.data + len(a.data)
 140052136
  ```
- Look at the ‘OWNDATA’ flag to tell if the array owns its data:
  ```
 >>> a.owndata
 True
  ```
- Look at the ‘OWNDATA’ flag to tell if the array owns its data:
  ```
 >>> b.owndata
 False
  ```
But this does not mean another array shares the data:

```python
>>> del a
```
8.2. Views and strides

Reshaping is (when possible) just a matter of changing the stride and shape for a flat array:

```python
>>> r = np.arange(8)
>>> r.strides
(4,)
>>> r.shape
(8,)
```

After reshape:

```python
>>> r2 = r.reshape((4, 2))
>>> r2.strides
(8, 4)
>>> r2.shape
(4, 2)
```

8.3. Fancy indexing

8.3.1 Rules

Indexing with integer arrays

```python
>>> import numpy as np
>>> a = np.arange(10).reshape((2, -1))
>>> a
array([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
 [10, 11, 12, 13, 14, 15, 16, 17, 18, 19]])
>>> a[:, (1, 3)]
array([[4, 6],
 [14, 16]])
```
Shape is given by (shape of indexing array) * slices:

```python
>>> a[:, (1, 3), (2, 4)].shape
(3, 2, 2)
```

If multiple integer arrays for indexing, they are broadcasted together:

```python
>>> a[(1, 1), (2, 4)]
array([[11, 21],
 [10, 20]])
```

Indexing with boolean arrays

```python
>>> a[(a % 2) == 0]
array([0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28])
```

Flat shape. Slicing not used:

```python
>>> a[:, (a % 2) == 0]
array([0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28])
```

### 8.3.2 Applications

#### Rearranging vectors

We have a vector family:

```python
>>> vectors = np.random.randint(10, size=(4, 5))
>>> vectors
array([[2, 8, 2, 1, 7],
 [5, 9, 2, 4, 6],
 [0, 8, 6, 5, 3],
 [1, 1, 6, 1, 1]])
```

We want to rearrange them by variance:

```python
>>> variance = np.var(vectors, axis=0)
>>> variance
array([3.5 , 10.25 , 4. , 3.1875, 5.6875])
```

```python
>>> rearranged = vectors[:, np.argsort(variance)]
>>> np.var(rearranged, axis=0)
array([3.1875, 3.5 , 4. , 5.6875, 10.25])
```

#### Bootstrapping

We have a vector `a`:

```python
>>> a = np.arange(20).reshape((2, 10))
>>> a
array([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
 [10, 11, 12, 13, 14, 15, 16, 17, 18, 19]])
```

We want to draw three times 10 vectors out of `a`:

```python
>>> indices = np.random.randint(a.shape[-1], size=(3, 10))
>>> indices
array([[3, 6, 5, 4, 8, 9, 1, 7, 9, 6],
 [8, 0, 5, 0, 9, 6, 2, 0, 5, 2],
 [6, 3, 7, 0, 9, 0, 3, 2, 3, 1]])
```

```python
>>> bootstrap = a[indices]
>>> bootstrap
array([[3, 6, 5, 4, 8, 9, 1, 7, 9, 6],
 [8, 0, 5, 0, 9, 6, 2, 0, 5, 2],
 [6, 3, 7, 0, 9, 0, 3, 2, 3, 1]])
```

```python
>>> indices = np.random.randint(a.shape[-1], size=(3, 10))
>>> indices
array([[3, 6, 5, 4, 8, 9, 1, 7, 9, 6],
 [8, 0, 5, 0, 9, 6, 2, 0, 5, 2],
 [6, 3, 7, 0, 9, 0, 3, 2, 3, 1]])
```

```python
>>> bootstrap = a[indices]
>>> bootstrap
array([[3, 6, 5, 4, 8, 9, 1, 7, 9, 6],
 [8, 0, 5, 0, 9, 6, 2, 0, 5, 2],
 [6, 3, 7, 0, 9, 0, 3, 2, 3, 1]])
```

Now we can do vectorized computations easily on the bootstrapped sample.

### Extracting a cut of volume along a horizon

We have an image (volumetric data):

```python
>>> image = np.random.randint(10, size=(5, 5))
>>> image
array([[3, 1, 3, 7, 1],
 [7, 4, 0, 5, 1],
 [5, 9, 9, 4, 0],
 [9, 8, 8, 6, 8],
 [6, 3, 1, 2, 5]])
```

And a horizon: the coordinates of a curve in the image:

```python
>>> horizon = np.array([3, 2, 1, 3, 2])
>>> horizon
array([3, 2, 1, 3, 2])
```

We can extract the value on the horizon:

```python
>>> image[horizon, np.arange(5)]
array([9, 9, 0, 6, 0])
```

Local average along a horizon

This time, we want to extract the voxels in the 3-voxels-wide region around the horizon:

```python
>>> image[horizon + np.arange(-1, 2)[:, np.newaxis], np.arange(5)]
array([[5, 4, 3, 4, 1],
 [9, 9, 0, 6, 0],
 [6, 3, 1, 2, 5]])
```

Two broadcastings: one in x coordinates `horizon + np.arange(-1, 2)[:, np.newaxis]`, and the second one between the x and the y coordinates.

Drawback of these techniques: costly in memory
8.4 Robert (Kern)’s nasty stride trick

Problem Sliding average, but we don’t want copies.
We want to take a sliding average of a, on a window of size 2:

```
>>> import numpy as np
>>> a = np.arange(8)
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7])
>>> a.strides
(4,)
```

We are going to create improbable strides and shapes (numpy 1.2):

```
>>> from numpy.lib import stride_tricks
>>> b = stride_tricks.as_strided(a, shape=(2, 7), strides=(4, 4))
>>> b
array([[0, 1, 2, 3, 4, 5, 6],
 [1, 2, 3, 4, 5, 6, 7]])
```

Stride: 4 4 4 4 4 4 4
Shape: x2

Stride: 4
Shape: x7

Overlapping dimensions!

Easy, now all we have to do is sum along the axis 0:

```
>>> b.sum(axis=0)
array([1, 3, 5, 7, 9, 11, 13])
```

---

pyflakes: fast static analysis

- Fast, simple
- Detects syntax errors, missing imports, typos on names.

9.1 In kate

Menu: ‘settings -> configure kate -> External Tools’, add pyflakes:

```
autocmd FileType python let &mp = 'echo "*** running %"; pyflakes %'
autocmd FileType tex,mp,rst,python imap <Esc>[15~ <C-O>:make!^M
autocmd FileType tex,mp,rst,python map <Esc>[15~ :make!^M
autocmd FileType tex,mp,rst,python set autowrite
```

9.2 In vim

In your .vimrc (binds F5 to `pyflakes`):

```
autoexec FileType python let &mp = "\"" *** running % \"" ; pyflakes \%
autoexec FileType tex,mp,rst,python imap <Esc>[15~ <C-O>:make!^M
autoexec FileType tex,mp,rst,python map <Esc>[15~ :make!^M
autoexec FileType tex,mp,rst,python set autowrite
```
9.3 In emacs

In your `.emacs` (binds F5 to `pyflakes`):

```lisp
(defun pyflakes-thisfile () (interactive)
 (compile (format "pyflakes %s" (buffer-file-name))))

(define-minor-mode pyflakes-mode
 "Toggle pyflakes mode.
 With no argument, this command toggles the mode.
 Non-null prefix argument turns on the mode.
 Null prefix argument turns off the mode."
 ;; The initial value.
 nil
 ;; The indicator for the mode line.
 "Pyflakes"
 ;; The minor mode bindings.
 '((f5 . pyflakes-thisfile))
)

(add-hook 'python-mode-hook (lambda () (pyflakes-mode t)))
```